If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+19x-2=0
a = 2; b = 19; c = -2;
Δ = b2-4ac
Δ = 192-4·2·(-2)
Δ = 377
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{377}}{2*2}=\frac{-19-\sqrt{377}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{377}}{2*2}=\frac{-19+\sqrt{377}}{4} $
| 5n/5+90/7=180 | | 13x-3=-23 | | 7+x-9+3=7x-5 | | 11x^2=x2+8x | | 2x−3=−8 | | 5/2x+3=x²+4 | | 12x120=8x+240 | | 2x-45+2x+6=180 | | 6-2(2+3)=1+4x | | c=9(5) | | 7=8^x-2 | | --(x+3/8)=0 | | c6=7 | | 4x−7=11 | | t+91=93 | | (7x)=(2x+27 | | q=28÷7 | | 2x/3+x=24 | | 2x+16+4-16/8=-2x | | 17+3=6+t | | -10v−8=10−8v | | j=85−10 | | 8n=7n−9 | | y=-7/2+86 | | x^2+3/2x−1/2=−1 | | z=84-14 | | -2t=6+4t | | x2+32x−12=−1 | | 24x-6=210 | | 1/5=x/525 | | 1/5=x/528 | | 64=-16t^2+0 |